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The utility of the Ligand polarization model in solving many physical problems 
in quantum mechanics has been appreciated among scientists during the last 
years. Problems such as electric dipole strength, vibronic electric dipole strength, 
optical activity calculations have been carried out within the framework of a 
dynamic coupling mechanism. 

Taking advantage of the irreducible tensor method put forward by Griffith 
in the case of molecular symmetry groups, both the molecular states and 
relevant operators can be classified in terms of irreducible representations 
of the molecular group in question, and therefore it is most convenient to 
express the relevant operators involved in any specific calculation in a sym- 
metry adapted form. As a starting point, we may classify our molecular 
states and operators in the 0-rotation group and lower symmetry groups may 
also be studied by using simple correlation properties. 

Here  we aim to deal with d-d and f - f  type of transitions, and hence the 22 
(electric quadrupole),  24 (electric hexadecapole) and the 26-multipoles are 
considered in some detail. We have adopted, the octahedral set of functions 
as given by Griffith to define the 2 t (l = 2, 4, 6) multipoles and obtain the 
corresponding geometrical factors for the various irreducible representations. 

Key words: Geometr ic  factors - Ligand polarization model. 

1. Introduction 

The Ligand polarization set of equations has been derived and applied by several 
authors [1-5] to various physical systems. 
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It has been shown that the a-vector component of the transition dipole moment 
associated with the 0-~ a excitation may be written the case of centrosymmetric 
complexes as follows [4, 6] 

2El 

~,,X t.~ E~ -E~  
(1) 

• X ~. M o , ; " [ - " ~ ' - - )  ol-e ,o~o, 
L B%..,8 

where: a, 8 = X, Y, Z. The notation is as follows: S~ ) stands for the Kth symmetry 
co-ordinates which transforms under a given ungerade irreducible representation 
of the point molecular group and A is a repeated representation label. G L /33,...,8 

are the corresponding geometrical factors and finally M0a~ ' stands for the 
transition multipole moment associated with the f l y . . ,  component of the 2 L 
multipole. 

It is seen that the above expression corresponds to a symmetry adapted form 
for the a-vector component of the transition dipole moment. It can also be seen 
that the oL-vector component of the transition dipole moment is made up of two 
components, namely the isotropic part and the anisotropic contribution to the 
transition dipole moment. The isotropic part is afforded by setting a = 8 in Eq. 
(1) and the anisotropic bit is obtained by setting a # 8, in the above equation. 
For isotropic ligands, such as halide ions, the nonvanishing part of the transition 
dipole moment becomes: 

A,Ir I E ~ - E ~  ~'v ..... 

• l--g yJolt o,I (2) 

and the polarizability tensor of the ligands adopts a diagonal form, and all the 
non-diagonal tensorial components vanish [7]. We then write: 

O~xx = a r r  = a z z  =aL = ~o 2Et 
, 

(3) 

and by combining Eqs. (2) and (3), the symmetry adapted a-vector component 
of the transition dipole moment adopts the form: 

/X~a=--X S~ ) X X M o ~  ' '  
A,K B"/...,~x L 

• I o o L . . . , A  _ , , 
(4) 

where dL(V0a) is the mean ligand polarizability measured at the frequency of the 
electronic transition 0 ~ a, that is voa. [8]. 
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2. Transition Multipole Moments 

Let us consider in some detail the evaluation of the transition multipole moment 
Mo~ "''. Let M be an ITO which transforms under the F irreducible representation 
of the relevant molecular group, and asssume that the wavefunctions 10) and la} 
transform under the F~ and F2 irreducible representations respectively. Then, 
we write: 

Mo. = (rlrdM r I r~)  

=V(r',v, F2,2 ~) (FdlMrlIF=) (5) 

where the Wigner-Eckart theorem has been employed [9]. The labels ~1, "}/2, 
and ~/ indicate the components of the F1, F2 and F irreducible representations 
respectively. 

The V-coefficients can be found in Griffith's work [9], and hence the actual 
evaluation of the transition multipole moment may be achieved by computing 
the reduced matrix element on the right hand side of the above equation. 

Let us now introduce the Garstang's tensorial operators T~ [10]. 

T~q = -erKC~ (6) 

where -e  is the electron charge, and the C~ are the standard Racah's tensor 
operators [11]. For those cases, such as d-d and/or f - f  type of transitions, the 
central metal ion multipoles involved have k lying in the range: K = 21, . . . ,  0, 
where l is the azimuthal quantum number of a d and/or f type of atomic orbital, 
therefore we only need to consider 22, 24, 26, . .. multipoles. 

The behaviour of general kets IKM) under the octahedral group 0 has been 
considered in detail by Griffith [12] and this is the convention we shall adopt in 
this work. For example, when K --- 2, Griffith finds: 

lEO) = r~ 
,3-- 1/2[ , -F2 l e e )  = ~ t * + 2  + T2-2 ) 

IT2+ 1) = T21 (7) 

IT20) = ~-l/2r,-t.2 ~ * + 2  - T 2 - =  ) 

IT2- 1) = -T2+1 

and in the same way, we may define the symmetry adapted form of the central 
metal'ion higher order multipoles. (Table A-19). Note that in the above set of 
equations, the kets IJM) have been replaced by the Garstang operators [10]. 
Having defined these symmetry adapted tensorial operators, it is straightforward 
to evaluate the transition multipole moment given by Eq. (5) for a given electronic 
transition. 
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3 Geometrical Factors 

Let us now consider the derivation of the geometrical factors involved in the 
calculation of the transition dipolar moment, see Eq. (4). 

This can be afforded by considering the electrostatic form of the Coulombic 
interaction potential between two non-overlapping charge distributions, say (M) 
and (L). In fact, Carlson and Rushbrooke [13] give a general relation for the 
potential between the multipole components of two non-overlapping charge 
distributions with an arbitrary relative orientation of co-ordinate frames and 
centres separated by a distance RL, which is identified here with the metal-ligand 
bond length [5]. 

The perturbation, say V representing this interaction may be written as follows: 

ei(M)ei(L) 
v=E Y (8) 

i (M) ,  j (L )  rij 

where rq is the distance between the charge ei of the metal ion (M) and the 
charge ej of the ligand (L). 

Following Carlson and Rushbrooke [13], the electrostatic potential may b e  
represented in tensorial form, as follows: 

~(K~ +K=) IRL, 8L, dPLID~ (M)D~(L  ) V= ~ Y~ ~-(~+q~) 
K1.  ql  K2,  q2 

(9) 

K 1 K 2 where Dq~I(M)=Tql  (M) and Dq2 (L )=T~22(L)  are the corresponding 
Garstang's tensor operators associated with the central metal and the ligand 
multipoles, respectively. 

The tensorial quantities T~_~,~++~ represent the geometrical dependence of the 
interaction and are expressed as follows: 

T (K~+K2) [RL, OL, dPL[ = / l"~q+lD--(K+l)[Dql"q2 "~l/2f'~K [ ,9  (~L) (10) 
- - (q l+q2  ) k--J_) ZX L ~,ZJ K 1 , K 2  ) v,..~ _q  ~,UL, 

with K = K1 +K2 and q = ql +q2. Furthermore, the scalars B~:I~~ are obtained 
by means of the relation: 

Bq~,q2 = (K + q ) ! ( K - q ) !  
K1,K2 (Kl+ql ) ! (Kl -q l ) ! (K2+q2)! (K2-q2) !"  

(11) 

Let us now introduce the ligand dipole vector components, defined as given 
below: 

,2,-1/2, x + i  Y~ D 1 ~L ~ / Z + l - ~ ' - - [  ) ~,IJ, L [.,I,L) = +11, ) 

z =D~ (L) /Xo=/zr 

_t_/2x-1/2/ x tz-1 = t ) t lZL - i l zY )=Dl - l (L )  

(12) 
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o,:~1 (ql - O, +1) in the following way: and the quantities flql 

_ T ( K ~ + I )  /3%1 - -(q1+1) 

= *-(q,+O) (13) 
__ , ' F , ( K I +  1) 

~ q l  1 - -  Jt _ ( q l _ l )  

and then, setting/(2 = 1, and combining Eqs. (9), (12) and (13) we obtain: 

+ K  1 
K 1 - 1 / 2  q V= Y~ Vql (M){-(2) (fl+'~-flq_~)tz x 

ql  = - K 1  

q~ Z +fl0 ~L--i(2)-1/2(/?q~l +flq-~)IzY}=AI+BI+C1, say. (14) 

The above expression describes the tensorial form of the interaction potential 
between two 2Kl-central metal ion multipoles and the f- l igand dipoles. It is 
customary in the ligand polarization model to choose the ligand dipoles as the 
leading multipole (1, 2, 3, 4, 5, 6) and depending upon the electronic transition 
in question, the central metal ion multipole with the smallest K-value is chosen 
as the leading term. 

For d-d type of transitions, we only need to consider the situations corresponding 
to K1 = 2, and 4 to have transition multipole moment other than zero, whereas 
for f - f  type of transitions K1 can afford the following values: K1 = 2, 4 and 6. 

The simplest situation arises when K~ = 2 and K2 -- 1, that is the quadrupole- 
dipole interaction potential. Once the symmetry adapted form of the central 
metal ion multipoles has been defined, for example by adopting Griffith's conven- 
tion (12), we only need to evaluate the terms A1, B I  and C1 given by Eq. (14) 
for all possible choices of ql, and generate as a result the relevant symmetry 
adapted geometrical factors, for any specific application. 

In most general terms, choosing the leading term of the ligands to be a dipole, 
the interaction potential energy V, see Eq. (14) may be expressed as follows. 

,-~L ~*~e" ~ (15) V = Y. Y. ~ . . . . 4v l  tz (L~ 
L aB. . . , " /  

where the geometrical factors are represented by GL~....r, the a/3.. .th component 
of the central metal ion multipole is denoted by M ~B'' and/xr(L) stands for the 
3,th-component of the ligand dipoles. 

We have considered three cases, which are relevant to d-d and f - f  type of 
electronic transitions. The f-multipole-dipole interaction potential is worked 
out for l = 2, 4 and 6. 

We also presented the derivatives of the symmetry adapted geometrical factors 
with respect to the cartesian nuclear displacements ligand coordinates. 

These derivatives are relevant in ligand polarization vibronic intensity calcula- 
tions [6]. 



306 T. Meruane and R. Acevedo 

References 

1. Mason, S. F., Seal, R. H.: Mol. Phys. 31, 755 (1976) 
2. Mason, S. F.: Fundamental aspects and recent advances in optical rotatory dispersion and 

circular dichroism. Ed. Ciardelli, F., Sabadosi, P. p 196, Chap. 3.8 Heydon, 1973 
3. Mason, S. F., Seal, R. H.: J. Chem. Soc. Chem. Commun. 331 (1975) 
4. Faulkner, T. R., Richardson, F. S.: Mol. Phys. 35, 1141 (1978) 
5. Mason, S. F., Peacock, R. D., Stewart, B.: Mol. Phys. 30, 1829 (1975) 
6. Acevedo, R.: Ph.D. Thesis. University of London (1981) 
7. Bottcher, C. J. F.: The theory of electric polarization. Elsevier Scientific Publication Company, 

1973 
8. Le F6vre, R. J. W.: Adv. Org. Chem. 3, 1 (1965) 
9. Griffith, J. S.: The irreducible tensor method for molecular symmetry groups. Englewood Cliffs, 

New Jersey: Prentice Hall, 1962 
10. Garstang, R. H.: Proc. Camb. Phil. Soc. 53, 214 (1057) 
11. Slater, J. C.: Quantum theory of atomic structure, Vol II, New York-Toronto-London: McGraw- 

Hill Book Company, 1960 
12. Gritfith, J. S.: The theory of transition metal Ions. New York, NY: Cambridge University Press, 

1961 
13. Carlson, B. G., Rushbrooke, G. S.: Proc. Camb. Phil. Soc. math. phys. Sci. 46, 626 (1950) 
14. Ballhausen, C. J.: Introduction to ligand field theory. New York: McGraw-Hill Book Company, 

1962 

Received July 8, 1982 

Appendix 

Table la.  geometrical factors associated with the corresponding symmetry components of the electric 
quadrupole-dipole interaction potential in a perfect octahedral symmetry. 

3 �9 3 3 --4 (A~: o are the coefficients of (Cq + C_q)R , where the C~q are the standard Racah's tensor operators) 

Gr,(x,y.z)L A~ A3+1 A3_1 A3+a A3_2 A3+3 A3_3 

,/3 o o o o G~o(x) 0 0 
L GE~(x) 0 0 - 1 / 2  0 0 __ 0 ~/]5/2 

G L 0 0 0 0 i~/10/2 0 0 T2(O(X) 

G L -',/3 0 0 ~/-~/2 0 0 0 T2(~)(X) 
L Gr2co(x~ 0 i/2 0 0 0 -i~/-~/2 0 
L GEo(y) 0 --i~/3 0 0 0 0 0 
L GE~(y ) 0 --i/2 0 0 0 --i~/-~/2 0 
L 4"3 0 0 4 ~ / 2  0 o o G T 2 ( i ) ( Y )  

G L 0 0 0 0 - i 4 - ~ / 2  0 0 T2(n)(Y) 
L GT2c~>~v> 0 0 --1/2 0 0 0 --~/15/2 
L G Eo(z) -3  0 0 0 0 0 0 
L GE~(z) 0 0 0 - ' , / ~ / 2  0 0 0 
L GT2(o(z ) 0 --2i 0 0 0 0 0 
L GT2(.>~> 0 0 --2 0 0 0 0 
L GT2~>(z) 0 0 0 0 i~/-~/2 0 0 
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Table lb .  Non-zero derivatives of the quadrupole-dipole geometrical 
factors, evaluated at the equilibrium internuclear distance Ro, for 
each ligand position (in units of Ro 5 ) 

Derivative Ligand position 

0,2 1,3 4,5 

aEo (X) 3 
-6  -6 

a x  

aX 2 

aT2(.xx) -4",/3 ,f3 -443 
aZ 

OT2(o(x) -443 -443 43 
OY 

3Eo(y ) 3 
OY -~ -6  -6 

-643 -43 
,gY 2 

c3T2(~)(y) x/3 -443 -443 
aZ 

aT2(cXy) -443 -443 4-3 
aX 

OEo(z) 9 9 
az ~ ~ 12 

OE~(z) -1043 1043 
0 

OZ 4 4 

OT2(.~)(z) ~./3 -4~/3 -4x/-3 
aY 

OT2(,)(z) -445 43 -445  
OX 
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Table 2b. Non-zero derivatives of the hexadecapole-dipole 
geometrical factors, evaluated at the equilibrium internuclear distance 
Ro, for each ligand position (in units of Ro 9) 

Ligand position 

Derivative 0, 2 1, 3 

54~ aAl(X) 54~ 
0X 2 

aEo(X) 541-5 -33x/-~ 
OX 2 12 

aE~ (X) - 1545 947 
aX 2 4 

aTl(y)(x) - 3 ~  0 
OZ 

aT~(z)(x) 3 4 ~  - 3 4 ~  
aY 

OT2(n)(X) -347 -34~ 
aZ 

OT2(c)(x) -3",/7 -3",/5 
OY 

OAI(Y) 542-1 5421 
OY 2 

aEo(Y) -334T5 5 4 ~  
aY 12 2 

aE~(Y) 947 1545 

aY 4 2 

aEl(~)(v) 0 -3~/~ 
OZ 

OTx(z)(r) 34"37 -34"~ 
aX 

oT2(tD(y) 3x/5 3x/5 
aZ 

OT2(O(y) --3~/g -3"/5 
aX 

OAI(Z) 5421 5~/~ 
oZ 2 2 

OEo(Z) ,/i~ 4 ~  
OZ 4 4 

aE~ (Z) 2145 2147 
oZ 4 4 

OTx(~)(z) 0 - 3",/3-5 
aY 

OTl(y)(z) -3~/~ 0 
oX 

4,5 

54~ 
2 

5,/i~ 
2 

3~q 

0 

-3,/7 

-345 

54~ 
2 

54i~ 
2 

-347 

34~ 

0 

3~/7 

-345 

-54~ 

0 

34~ 

3437 

T. Meruane and R. Acevedo 
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Table 2b--contd. 

Ligand position 

OT2(~(z~ 345 3~/5 3~/5 
oY 

aT2(n~(z~ -345 -345 -34-5 
OX 

311 
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Table 3a. Geometrical factors associated with the octahedral symmetry components of the 
electric 26-dipole interaction potential (A7q are the coefficients of (C 7 + CV_q)R-8) 

Gr(x,y,z)L A 70 A 71 A 71 A7+2 A 72 A7+3 

2 ~  
L 0 0 0 GAI(x)  0 0 4 

,/1-~ 
L 0 0 0 G A2(x) 0 0 8 

7 
L - -  0 0 0 GEO(X ) 0 0 2 

54~ 
L 0 0 0 GE~(x) 0 0 8 

114~ 
G L 0 0 0 0 i 0 Tl(x)(X) 8 

3x/-7 x/3 
L 0 0 0 0 GTacy)(x) 4 8 

,/g 
L GTI(z)(x) 0 0 0 0 0 - i  T 

15410 
L - -  0 G T~(e)Cx) 0 0 0 0 i 32 

G~'~('>~x~ 16 0 0 32 0 0 

~/]5 3 ~ / ~  
L - -  0 0 0 i - -  GT~(c)(x) 0 --i 2 2 

1 3 , / ~  L G b 0 0 0 0 i - -  0 
T2(~)(X) 32 

3 4 4 - ~  234i-i" 
L - - - -  0 0 0 0 

G Tb(~)(X) 16 32 

L 
G Tb(r 0 0 0 0 0 0 

L - -  0 0 0 i - -  G A~y~ 0 --i 4 4 

4 1 ~  3 4 ~  
t. - -  0 0 0 - i - -  G A2(Y ) 0 --i 8 8 

7 4-~ L G EO(Y) 0 --i-~ 0 0 0 - - i ~ -  

54~ 15 
L - -  0 0 0 i - ~  Gz~(v) 0 - i  8 

L 0 0 - -  0 0 G Tl~v~ 4 8 

1145 
L - -  0 GTI(y)(y) 0 0 0 0 i 8 

L Gr,(:~y~ 0 0 0 0 0 0 
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A!3 AT+, A7-4 A15 A!5 A76 A7-6 A7+7 A7-7 

0 0 0 0 0 0 0 
4 4 

3 4 ~  45  ,/455 
0 0 0 - -  0 0 0 

8 8 8 

,/~ ,/35 
- -  0 0 0 0 0 0 0 
4 4 

15 4 ~  4~o i  
- - -  0 0 0 0 0 0 

8 8 8 

~ 4 , ~  
0 0 - i  0 0 0 - i  0 0 

4 8 

-3`/6-6 4429 
0 0 0 0 0 0 0 

4 8 

4 ~  
0 0 0 i~- - -  0 0 0 0 0 

3455 3,/1430 
0 0 0 - i  0 0 0 i 0 

8 32 

3 , / ~  341430 
0 0 0 0 0 0 0 

16 32 

0 0 0 0 0 0 0 0 0 

13 4 2 ~  
0 0 i T 0 0 0 i 3 ~  0 0 

29 42---~ 
0 0 0 0 0 0 0 

16 32 

/ 4 ~  
0 0 0 - 2  0 0 0 i 2 0 

,/2-~ 
0 0 0 i 4 0 0 0 0 0 

,/5 ,/4-~ 
0 0 0 i ~ -  0 0 0 i 8 0 

o o o i-7-- o o o o o 

4 ~  ,/lool 
0 0 0 - i  0 0 0 i 0 

8 8 

0 0 0 0 0 0 0 
8 8 

,/66 ,/429 
0 0 i ~ -  0 0 0 - i -  8 0 0 

,/g ,/• 
- -  0 0 0 0 0 0 0 
2 2 
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Table 3a--contd. 

T. Meruane and R. Acevedo 

L Gr(x,y,z) A7 A7+1 A71 AI2 A7-2 A73 

L 4210 341-0 
G T~(~,)(y) 0 0 0 0 

16 32 

G L 1 5 4 ~  T~(n)(y ) 0 0 0 0 --i 0 
32 

GT~(r.)Cy ) 0 0 0 0 0 
2 

C 3,/462 23x/H 
G b 0 0 0 0 T2(~)(y) 16 32 

r 23~/H" 
G T~(n)(y) 0 0 0 0 i - -  0 

32 

2~v)  0 0 0 0 0 0 

74~ 
L 0 0 0 0 0 G AI(z) 4 

34Vi-6 L 
G A2(z) 0 0 0 - - -  0 0 

8 

74-~ L 
Guo(z) 0 0 0 0 0 

4 

1542 
GL~(z) 0 0 0 0 0 

8 

3x/2 5x/6 L 
GTI(~)(z) 0 --i--~- 0 0 0 i 4 

34~ L 
GT1(y)(z) 0 0 0 0 0 

2 

L 
GTI(~)(z) 0 0 0 0 0 0 

4 ~  9x/5 L 
G T~(~)(z) 0 - i ~ -  0 0 0 i 4 

'/15 L 
G T~(n)(z) 0 0 0 0 0 

4 

3,/-~ L 
G T'~(o(z) 0 0 0 0 - i ~ -  0 

3 4 ~  541~ L G ~ 0 T2(~)(Z) - - i ~  0 0 0 --i 8 

3 4 ~  
L 0 0 0 0 0 GTz(n)(Z) 4 

L 
G Tb2(C)(Z) 0 0 0 0 0 0 
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Table 3b. Non-zero derivatives of the 26-dipole geometrical factors 
in octahedral symmetry, evaluated at the equilibrium internuclear 
distance Ro, for each ligand position (in units of R o 13) 

T. Meruane and R. Acevedo 

Ligand position 

Derivative 0, 2 1, 3 4, 5 

OAI(X) 1442 -742 
ax 

OA2(X) 2x/~ 
0 

OX 4 

134~ OEo (X) -7x/14 
OX 8 

OE~(X) 7x/4-2 33x/~ 
OX 8 

OTl(y)(x) 6x/7 0 
OZ 

OTl(z)(X) 647 -647 
aY 

az  2 

aT~(r ~ 
oY 2 2 
b 34x/~ OT2(n)(x) 

0 
aZ 2 

b 3 x / ' ~  3x / ' ~  OT2(~)(x) 
OY 2 2 

OAI(Y) -742 1442 
OY 

OA2( Y) ",/2-~ 
0 

OY 4 

aEo(Y) 1341-4 - 7 4 ~  
OY 8 

OE~(Y) 33x/~ - 7 4 ~  
OY 8 

OTl(x)(y) -135x/7 327x/7 
OZ 32 32 

aTl(z)(v) 647 -6,/7 
aX 

oT~(o(y) 7x/210 5x/2~ 
oZ 8 8 

OX 2 2 

-7~  

2,/~T6 
4 

- 7 5 ~  

4 

-6~  

0 

2 

-42-T6 

3~4--~ 
2 

0 

- 7 ~  

J2310 
4 

- 7 ~  

4 

-6J7 

0 

42~6 
4 

-2~T6 



Evaluation of Geometrical Factors 

Table 3b--conM. 

Ligand position 

Derivative 0, 2 1, 3 4, 5 

3,/4--~ 34,/~ OT2(o(Y) 0 
oZ 2 2 
b 3x/4-~ 3~/4--~ OT2(~)(Y) 

0 
oX 2 2 

aAI(Z) -742 -742 1442 
aZ 

OA2(Z) 423f0 42-~0 
0 

OZ 4 4 

OEo(Z) 43x/14 434i-4 14,/i~ 
oZ 8 8 

OE~ (Z) 4 7 4 ~  4 7 4 ~  
0 

oZ 64 64 

OTI(~)(z) 15~/7 3~/7 
-1845 

aY 16 2 

OTl(y)(z) __347 -1547 1847 
aX 2 i6 

OT~(e)(z ) 337x/2-~ 1142"i0 ",/2~ 
OY 256 32 2 

OT~(.)(z~ -1142-f6 -337 2x/~ 
OX 32 256 2 
b OT2(~)(z) - 3 4 " ~  -3x/~'2 

0 
oY 2 2 
b 3 , /g~  3 4 g ~  oT2(~)(z)" 0 
oX 2 2 
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