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On the Evaluation of the Geometrical Factors Utilized
in Ligand Polarization Calculations

Teodoro Meruane* and Roberto Acevedo**

Department of Chemical Engineering, Faculty of Physical and Mathematical Sciences, University
of Chile, Santiago, Tupper 2069, Casilla 2777, Chile, South America

The utility of the Ligand polarization model in solving many physical problems
in quantum mechanics has been appreciated among scientists during the last
years. Problems such as electric dipole strength, vibronic electric dipole strength,
optical activity calculations have been carried out within the framework of a
dynamic coupling mechanism.

Taking advantage of the irreducible tensor method put forward by Griffith
in the case of molecular symmetry groups, both the molecular states and
relevant operators can be classified in terms of irreducible representations
of the molecular group in question, and therefore it is most convenient to
express the relevant operators involved in any specific calculation in a sym-
metry adapted form. As a starting point, we may classify our molecular
states and operators in the O-rotation group and lower symmetry groups may
also be studied by using simple correlation properties.

Here we aim to deal with d—d and f-f type of transitions, and hence the 2°
(electric quadrupole), 2* (electric hexadecapole) and the 2°-multipoles are
considered in some detail. We have adopted, the octahedral set of functions
as given by Griffith to define the 2! (1=2,4,6) multipoles and obtain the
corresponding geometrical factors for the various irreducible representations.
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1. Introduction

The Ligand polarization set of equations has been derived and applied by several
authors [1--5] to various physical systems.
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It has been shown that the a-vector component of the transition dipole moment
associated with the 0> a excitation may be written the case of centrosymmetric
complexes as follows [4, 6]
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where: a, § = X, Y, Z. The notation is as follows: S’ stands for the Kth symmetry
co-ordinates which transforms under a given ungerade irreducible representation
of the point molecular group and A is a repeated representation label. G',;.,,,,,a
are the corresponding geometrical factors and finally M5)~ stands for the
transition multipole moment associated with the By... component of the 2-
multipole.

It is seen that the above expression corresponds to a symmetry adapted form
for the a-vector component of the transition dipole moment. It can also be seen
that the «- vector component of the transition dipole moment is made up of two
components, namely the isotropic part and the anisotropic contribution to the
transition dipole moment. The isotropic part is afforded by setting a« =6 in Eq.
(1) and the anisotropic bit is obtained by setting « # 8, in the above equation.
For isotropic ligands, such as halide ions, the nonvanishing part of the transition
dipole moment becomes:
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and the polarizability tensor of the ligands adopts a diagonal form, and all the
non-diagonal tensorial components vanish [7]. We then write:
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and by combining Egs. (2) and (3), the symmetry adapted a -vector component
of the transition dipole moment adopts the form:
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where & (vo,) is the mean ligand polarizability measured at the frequency of the
electronic transition 0 a, that is v,.. [8].
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2. Transition Multipole Moments

Let us consider in some detail the evaluation of the transition multipole moment
ME. Let M be an ITO which transforms under the I' irreducible representation
of the relevant molecular group, and asssume that the wavefunctions |0) and la)
transform under the I'; and T, irreducible representations respectively. Then,
we write:

Mo, =(T1y1|M5|T2y2)

=v(i T Dywimiey (5)
Y1 Y2 VY

where the Wigner-Eckart theorem has been employed [9]. The labels vy, va,
and ¥ indicate the components of the I'y, I'; and T irreducible representations
respectively.

The V-coefficients can be found in Griffith’s work [9], and hence the actual
evaluation of the transition multipole moment may be achieved by computing
the reduced matrix element on the right hand side of the above equation.

Let us now introduce the Garstang’s tensorial operators Ty [10].
TS =—er®C¥ (6)

where —e is the electron charge, and the CX are the standard Racah’s tensor
operators [11]. For those cases, such as d-d and/or f-f type of transitions, the
central metal ion multipoles involved have k lying in the range: K =2/,...,0,
where [ is the azimuthal quantum number of a d and/or f type of atomic orbital,
therefore we only need to consider 2%, 2% 26, ... multipoles.

The behaviour of general kets |[KM) under the octahedral group 0 has been
considered in detail by Griffith [12] and this is the convention we shall adopt in
this work. For example, when K =2, Griffith finds:

|E6)=T3

[Ee)=2""%(T%, +T2,)

[T, +1)=T2, @)
1 T20)=27"3(T%, = T2,)

ITa-1)=-T%

and in the same way, we may define the symmetry adapted form of the central
metal ion higher order multipoles. (Table A-19). Note that in the above set of
equations, the kets [JM) have been replaced by the Garstang operators [10].
Having defined these symmetry adapted tensorial operators, it is straightforward
to evaluate the transition multipole moment given by Eq. (5) for a given electronic
transition.
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3 Geometrical Factors

Let us now consider the derivation of the geometrical factors involved in the
calculation of the transition dipolar moment, see Eq. (4).

This can be afforded by considering the electrostatic form of the Coulombic
interaction potential between two non-overlapping charge distributions, say (M)
and (L). In fact, Carlson and Rushbrooke [13] give a general relation for the
potential between the multipole components of two non-overlapping charge
distributions with an arbitrary relative orientation of co-ordinate frames and
centres separated by a distance R;, which is identified here with the metal-ligand
bond length [5].

The perturbation, say V representing this interaction may be written as follows:

V=Y e;(M)e;(L)

i (M), (L) tij

(8)

where r; is the distance between the charge ¢; of the metal ion (M) and the
charge ¢; of the ligand (L).

Following Carlson and Rushbrooke [13], the electrostatic potential may be
represented in tensorial form, as follows:

V=3 ¥ T3 IR 61, D3 (M)D (L) ©)
K1,q1 K2, 92
where D (M) = T (M) and D¥ 2(L)= Tf; 2(L) are the corresponding
Garstang’s tensor operators assomated with the central metal and the ligand
multipoles, respectively.
The tensorial quantities T(_(t}fff,g) represent the geometrical dependence of the
interaction and are expressed as follows:

TG HD IR, 60, @)= (1) 'RV (B2 )2C, (61, DL) (10)

with K =K+ K, and q = q1 +q2. Furthermore, the scalars B/ ql i , are obtained
by means of the relation:

K +q)!(K —q)!
K1+q)N K1 —q)N K2+ g (K —g)t

(11

d1.9,
BKl,Kz -

Let us now introduce the ligand dipole vector components, defined as given
below:
a1 =—Q2) W +inl) =D (L)
ho=uf =DIL) (12
o1 = +2) "V (wf —iur) =D (L)
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and the quantities 831 (q: =0, £1) in the following way:
(K +1)
B =T
K, +1
Ba =TELD, (13)
= (¢ +1)
B =Ty

and then, setting K, =1, and combining Egs. (9), (12) and (13) we obtain:

Ve 3 DEM-Q) @Y - )uk

g91=—K;
Bt —i(2)*(Be WH+BMur=A+B1+Cy, say. (14)

The above expression describes the tensorial form of the interaction potential
between two 251-central metal ion multipoles and the 2'-ligand dipoles. It is
customary in the ligand polarization model to choose the ligand dipoles as the
leading multipole (1, 2, 3, 4, 5, 6) and depending upon the electronic transition
in question, the central metal ion multipole with the smallest K -value is chosen
as the leading term.

For d—-d type of transitions, we only need to consider the situations corresponding
to K; =2, and 4 to have transition multipole moment other than zero, whereas
for f—f type of transitions K, can afford the following values: K; =2, 4 and 6.

The simplest situation arises when K; =2 and K, =1, that is the quadrupole~
dipole interaction potential. Once the symmetry adapted form of the central
metal ion multipoles has been defined, for example by adopting Griffith’s conven-
tion (12), we only need to evaluate the terms A4, B; and C; given by Eq. (14)
for all possible choices of gi, and generate as a result the relevant symmetry
adapted geometrical factors, for any specific application.

In most general terms, choosing the leading term of the ligands to be a dipole,
the interaction potential energy V, see Eq. (14) may be expressed as follows.

=Y ¥ Gop. M*Pul, (15)

L af...,v

where the geometrical factors are represented by Gg.._,, the aB. . .th component
of the central metal ion multipole is denoted by M **~ and (L) stands for the
yth-component of the ligand dipoles.

We have considered three cases, which are relevant to d—d and f-f type of
electronic transitions. The 2'- - multipole—dipole interaction potential is worked
out for /=2, 4 and 6.

We also presented the derivatives of the symmetry adapted geometrical factors
with respect to the cartesian nuclear displacements ligand coordinates.

These derivatives are relevant in ligand polarization vibronic intensity calcula-
tions [6].
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Appendix

Table 1a. geometrical factors associated with the corresponding symmetry components of the electric
quadrupole—dipole interaction potential in a perfect octahedral symmetry.
(Aiq are the coefficients of (C?, + Ciq )R “4, where the C 1,1 are the standard Racah’s tensor operators)

Grixv.z) A} AL AY AL AN AL Al
GLox) 0 0 V3 0 0 0 0
GEex) 0 0 -1/2 0 0o 0 v15/2
GTawm 0o 0 0 0 iv10/2 0 0
If‘z(n)(x) —3 0 0 Jio/2 o o 0
G%‘zm(x; 0 i/2 0 0 0 —i\/15/2 0
Gov) 0 NI 0 0 0 0
GEev) 0 —-i/2 0 0 0 —iv15/2 0
%2(5)(\’) V3 0 0 \/10/2 o 0 0
G Tamxr 0 0 0 0 -iv10/2 0 ('
oo 0 0 -1/2 0 0 0 —J15/2
GEoz) -3 0 0 0o 0 0 0
GEez) 0 0 0 —V10/2 0 0 0
GTuow 0 —2i 0 0 0 0 0
Totmz> 0 0 -2 0 o_ o 0
G%"Z(:)(Z) 0 0 0 0 i\/10/2 0 0
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Table 1b. Non-zero derivatives of the quadrupole-dipole geometrical
factors, evaluated at the equilibrium internuclear distance R,, for
each ligand position (in units of R3°>)

Derivative Ligand position
0,2 1,3 4,5
AE4(X) 3
_ _._6 — —
X 2 6
9E,(X) 3
— 6v — NE)
aX 3 2 3
o w3 3 43
oZ
T20x) J3 NGy 3
———-aY 4V3 4v3 3
0Eq(v) 3
Y 2 6 =6
9E.x) -3 - -
oy ) -6v3 -3
I PTORS) V3 NGy =
— 3 43 ~4+/3
0Ty vy J3 3 oy
5% 43 4v3 3
9Eq(z) 9 9
Az 2 2 12
AE, (z) ~10v3 10v3 o
¥4 4 4
T2 73 Ny Nl
oy 3 -443 43
Matoyz) NN 43

84X
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Table 2b. Non-zero derivatives of the hexadecapole—dipole
geometrical factors, evaluated at the equilibrium internuclear distance
Ro, for each ligand position (in units of R5”)

Ligand position

Derivative 0,2 1,3 4,5
3A(X) i _5¢21 _5J21
aX 2 2
3E,(X) 5v15 -33V15  5V15
ax 2 12 2
IE.(X) -15Vs 95 343
ax 2 4

o) -3435 0 3v35
Y4

3100 3v35 -3v35 0
Y

LEIVES 35 345 _3V5
Py

LGS -3v5 -3J5 -3J5
Y

3A(Y) _5Jﬁ w3l _SJH
ay 2 2

3E,(Y) -33J15  5/15 5V15
Y 12 2 2

3E.(Y) ﬂg 15v5 33
Y 4 2

Ermw 0 —3v35 3v35
9z

3Ty 3v35 -335 0
ax

ey 3V5 35 35
az

M) -3v5 ~3v5 -3v5
ax

3AL(Z) 5v21 _5v21 S5
9z 2 2

3E,2) BB o
9z 4 4

oE.(Z) 21V5 _21J§ 0
3z 4 4

LATEITEd) 0 -3435 335
Y

Mz ~335 0 3V35

.4
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Table 2b—contd.

Ligand position

8Toeyz) 13
Y
8T2wyz) _3J3

ax

kNG

-3J5

3vs

N
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Table 3a. Geometrical factors associated with the octahedral symmetry components of the
electric 26-dipole interaction potential (Alq are the coefficients of (CZ + clq YR

Grix.v.z) A Al AT, AL, AL Al
W7
Gh 0 0 e 0 0
V165
Gio, 0 0 3 0 0
L 7
GEox) 0 0 > 0 0 0
5V3
GEex) 0 ] ' 0 0 0
11V3
Glf‘mxx; 0 0 0 ! 3 0
W7 V3
Glf‘l(y)(X) T 0 0 _? 0 0
5 V6
Gl 0 0 0 0 0 —ie
15V10
Glf'ﬁ(e)(m 0 0 0 0 ! 32 0
V210 3V10
Glf‘%(n)(m - 16 0 0 - 32 0 0
Vis 3V10
G0 0 —i—= 0 0 0 =
13v22
G”I_"i(exm 0 0 0 0 ! 32 0
. 3v462 2311 0
G Ty Y 0 32 0
G0 0 0 0 0 0 0
27 V21
GIAI(Y) 0 —1—4— 0 0 0 ZT
v165 3V55
G 0 —i—— 0 0 0 —i
7 ‘ V3
GEoy) 0 iy 0 0 0 —i
53 15
Glés(y) 0 _’_8_ 0 0 1_8_-
3V7 V3
G%‘x(:)(v) —4— 0 0 ? 0 0
11V3
Glypr 0 0 0 0 i 3 0
Gt 0 0 0 0 0 0
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A7, AT, A, AT AT Al AT A7, AT,

21 V231
J21 0 0 0 = 0 0 0 0
4 4
V55 Js V455
_ 3935 0 0 V5 0 0 0 vass
8 8 8
_ 5
3 0 0 0 _¥B 0 0 0
4 4
v V1001
B 0 0 0 1 0 0 0 -—
8 8 8
N/ v
0 0 EPALL 0 0 YA, 0
4 8
~3J66 Y
o 3V66 0 0 429 o 0 0
4 8
e
0 0 0 i—26—§ 0 0 0 0 0
3Vs5 13V1430
0 0 0 —i—=— 9 0 0 i 0
8 32
V55 V1430
0 W55 0 o 3V1430 0 0
16 32
0 0 0 0 0 0 0 0 0
13 V234
0 0 = 0 0 0 —
i 3 i 3 0
29 V234
0 -= 0 0 0 = 0
16 32 0
0 0 0 L 0 0 0 i@—l 0
2 2
V231
0 0 0 i—4—— 0 0 0 0 0
J5 V.
0 0 0 — 0 0 0 ;1453
8 8
V33
0 0 0 iV 0 0 0 0 0
Vi1
0 0 0 EPALL I 0 0 /1001
8 8
3v66 Va2
0 == 0 0 V429 0 0
8 8
V66 V429
0 0 i— 0 0 0 —i—=
l n i P 0
J6 J66
— 0 0 0 0 0 0 0
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Table 3a—contd.

Gfix,v,z) Aj AT, AT, Al, AT, AT,
V210 3J10
G I‘f"z"(e)(v) _“1 5 0 0 - —3-2— 0
_15V10
Glfi‘(n)m 0 0 0 0 ..,_35_
V15
Gé‘“z”m(w 0 0 TN 0 0 0
3V462 23V11
Glf"&e)w) 16 0 0 32 0 0
23V11
Glf'z’(m(v) 0 0 0 0 IT
Gl’f‘lz’(z)(v) 0 0 0 0 0 0
w2
Ghiz -5 0 0 0 0 0
3v110
Ghsz 0 0 0 e 0 0
v
Gée(z) T4 0 0 0 0 0
15v2
GEezy 0 0 0 -5 0 0
32 5V6
Glf‘m)(a 0 —ZT 0 0 0 ,T
3V2
Gl 0 0 = 0 0 0
G% 0 0 0 0 0 0
TiGuz)
L V15 95
GT3e 0 —IT 0 0 0 ,T
J15
G%"‘z'(nxz) 0 0 —T 0 0
L 3V5
GToz 0 0 0 0 -is =
333 5V11
Gl’f"z’(E)(Z) 0 ~i 1 0 0 0 _,_8
333
Gham@ 0 0 T4 0 0

Gz 0 0 0 0 0 0
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AT, AT, AT, Als Al AT, AT A7, A7,

3V55 3v1430
0 BEACEI 0 0 0 0
8 32
J35 3v1430
0 0 EPEACEI 0 0 i 0 0
8 32
J5
% 0 0 0 0 0 0 0 0
29 V234
0 = 0 0 0 v, 0 0
16 32
29 V234
0 = 0 — 0
0 116 0 0 i 7 0
1 Jo1
0 0 0 0 = 0 0 0 Vol
2 2
V231
0 - 0 0 0 0 0 0 0
V130
0 0 0 0 0 — 0 0 0
V33
0 - 0 0 0 0 0 0 0
V286
0 0 0 0 0 e 0 0
V66
0 0 0 i 0 0 0 0
5v6 0 0 0 e 0 0 0 0
4 4
J66
0 0 —im— 0 0 0 0 0 0
V495
0 0 0 —i— 0 0 0 0
_&g 0 0 0 V495 0 0 0
4 8
0 0 0 0 0 0 0 0 0
3
0 0 0 -ig 0 0 0 0 0
Vi1 0 0 0 3 0 0 0 0
8 8
Ve
0 0 0 0 0 0 _¥2e 0
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Table 3b. Non-zero derivatives of the 26-dipole geometrical factors
in octahedral symmetry, evaluated at the equilibrium internuclear

distance Ry, for each ligand position (in units of Ry'?)

Ligand position

Derivative 0,2 1,3 4,5

24:(X) 142 N = ND)
aX

3A(X) 0 V2310 2310
ax 4 4

_ iz _

M _7J14 M ~7V14
ax 8

AE.(X) B 3342 5V42
8X 8 4

T1yyx) 7 0 7
9z

ey 67 ~6v7 0
Yy

9T 20 ¥210 W V210
Iy 2 2

T30 V210 V210 /5T
aY 2 2

LS 3462 0 3v462
9z 2 2

LR 3v462 3V462 .
Yy 2 2

244(Y) 742 14v2 -V2
Yy

3A,(Y) V2310 0 _¥2310
Y 4 4

3Ey(Y) 1314 T3 T
aYy 8

OE(Y) W o 8
Y 8 4

0T 1) v) —135v7 327V7 67
9z 32 32

Meom 6v7 —6v7 0
aX

T 2ev) 7210 _5«/% _«/210
oz 8 8 4

3T 30w v210 V210 V710
ax 2 2
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Table 3b—contd.

Ligand position

Derivative 0,2 1,3 4,5
T30 0 _i\/_4_62 _ 3;@—6_2
dZ 2 2
CLET a6 a2
)¢ 2 2
24,2) -2 -2 14v2
0Z
e Em D
oZ 4 4
——BE;éZ) 43%1:‘- i%éi 14V14
. (Z) e avm
YA 64 64
0T 1xyz) 15_*/7_ _ﬂ 1847
Y 16 2
a———T:}?(Z) %7— _—1156£ 18V7
T3z 3377210 11v210 V210
Ty 256 32 )
3T S myz) ~11v210  -337v210 <210
X 32 256 2
3T 5ex2) 0 -3V462 -3V462
Y 2 2
3T 3my2) @ @

aX 2 2




